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ABSTRACT

In this paper e describe' a theory for parabolic(equations for immersed curves on surfaces, which
generalizes the curve shortening or flow by mean curvature problem, as well as several models in the theory
of phase transitions in two dimensions.

-We describe ,a class of equations for which the initial value problem is well posed for rough initial data,
for which one can give a description of the way a smooth solution becomes singular, and for which one can
define generalized solutions, i.e. solutions which are smooth, except at a discrete set of times.

The methods which are used in this paper are more geometrical than those of part I. By comparing
arbitrary solutions with certain special solutions, and by considering the way they intersect, estimates for
the curvature aad the Langent are derived, which allow one to study the initial value problem, and the way
solutions become singular.
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PARABOLIC EQUATIONS FOR CURVES ON SURFACES.

II Intersections, blow up and generalized solutions.

Sigurd B. Angenent'

Introduction.

In this paper we continue our study of families of dosed oriented immersed curves "t(t)
(0<t <t 0 ), on an orientable surface (M, g), whose normal velocity v satisfies

(0.1) v' =

for some function V:S'(M)xR-*R. Here t,(t)ES'(M) is the unit tangent to the curve 1y(t), and k(,)
is its curvature.

As we observed in the introduction to part I, this problem is a generalization of the "curve
shortening problem," where V(t, k)=k, and which has recently enjoyed the attention of a number of
people, both for purely aesthetic reasons, and also from a more applied point of view [AL, EW, G,
GH, GuA, GrI, Gr2, RSKJ.

For the curve shortening problem it is known that solutions become singular in finite time. One
expects that this can only happen if the curve shrinks to a point (as in [AL, GH, Grl]), or if the curve
has a self intersection, and one of its "loops contracts."

/' >

Figure 0.1 - A contracting loop and the limit curve.

By drawing pictures one can convince one self that a limit curve with cusp like singularities must
exist, and that there must be a smooth solution of (0.1) with V-k, which has this limit curve as initial
value. Thus one can imagine that there might be a generalized solution of (0.1), which becomes
singular at a discrete set of times, and either exists for ever, or shrinks to a point in finite time.
Indeed for the curve shortening problem Grayson [Grl, Gr2] has shown that an embedded curve
never becomes singular, unless it shrinks to a point on the surface.

1. While I was working on this paper, I was partially supported by a National Science Foundation Grant No. DMS-801486,
an Air Force Office of Scientific Research Grant No. AFOSR-87-0202, and The Netherlands Organization for Pure
Scientific Research (ZWO).
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Our goal in this paper is to prove a rigorous version of these statements, for as large a class of
V's as we can.

In part I we found natural conditions on V for which the initial value problem associated with
(0.1) has a short time solution for initial data -yo with Lp curvature. The methods which we used
were mainly based on integral estimates and existing results on parabolic PDE ([Ei, LUS, DPG, Al]).
By contrast, the tools of this paper are more picturesque. Most arguments involve comparing a given
solution with several special solutions, paying particular attention to their intersections. It turns out
that the number of such intersections cannot increase with time, and this fact allows us to get
estimates on the tangent and the curvature of a solution. The precise results concerning zeroes of
solutions of parabolic equations are stated in the first section.

In sections two and three we complete the proof of what was announced and partially proven as
"theorem B" in part I. Thus we prove:

Theorem A. Let V satisfy

(VI) V: S 1 (M) x R-R is locally Lipschitz

(V2) < V <ak

(V 3) I V(t, 0) I < pfor all tES'(M),

(*) I vhV I + I kVYv 1 ---v~ + I k 12

for some positive constants )A, p, v.
Then for any locally Lipschitz -to there's a family -y(t) (05t <tMa ) of curves which satisfy (0.1), and

which have initial position -(0)= -Yo.

See theorem 3.2.

Starting in section four we shall also assume that V satisfies the symmetry condition

(S) V(-t, -k) = -V(t, k)

for all tES'(M),kER. If V satisfies this condition and -1(t) is any family of curves satisfying (0.1),
then the family A () which is obtained from -y(t) by reversing its orientation also satisfies (0.1). The
condition (S) is not only sufficient, it is also a necessary condition for (0.1) to be invariant under
orientation reversal. In section four we show:

Theorem B. Let V be a C2 ' function on S1(M)xR which satisfies V2, V3, V5 and S. Then the
initial value problem (0.1) has a short time solution for any initial curve which is C1 locally graphlike.

A local homeomorphism -y:SI--*M is said to parametrize a C' locally graph like curve, if there's a
local homeomorphism a:S1 x[-1, 11--M such that

(1) "y(x) = a(x, u (x)) for some continuous function uEC°(S') with I u (x) I < 1/2.

(2) The partial derivative a(x y) is a continuous function which vanishes nowhere, so thatay
a I {x}x[-1, 11 is a C' regular curve segment for anyxES'.

(3) &T(x, y) exists and is a continuous function except at y = u (x).
3x

This defmion is slightly different from the one which was announced in part I, when theorem B was
stated. The difference lies in the more detailed continuity requirements for the map a.
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Having dealt with the initial value problem, we study the way in which a maximal classical solution
of (0.1) can become singular. In part I it was shown that a limit curve always exists, and that it is a
locally Lipschitz curve with finite total absolute curvature. In particular, away from a finite number
of points it is locally the graph of a Lipschitz continuous function.

Using our extra assumptions V 5 and S, we show in section five that the limit curve is piecewise

smooth:

Theorem C. Let V be a C2-1 function on S1(M)xR which satisfies V2, V3, V5* and S, and let
-1: [O, tM,,)-'fl(M) be a maximal classical solution of (0.1). Then the limit curve -* of the -y(t) is a
piecewise C1 curve, which is C2-* away from its singular points.

One could try to use this limit curve as initial data for (0.1), with the goal of constructing a global
"weak solution." It turns out that the limit curve might contain some "bad parts," such as pieces
which are parametrized twice, so that the limit -* won't be a C' locally graphlike curve. However,
one can remove certain "redundant" parts of -", and define a reduced limit curve Id. This is done
in section six, where we also show that the reduced limit curve is indeed C' locally graph like. Then,
in the seventh section we prove

Theorem D. If -y: [0, tMux)-*fl(M) is a maximal classical solution which becomes singular in finite
time, then the limit curve either has less self intersections than any of the -y(t)'s, or else its total absolute
curvature K. satisfies

K. < lim Kr(t) - r,

where K(t) is the total absolute curvature of -(t.

This allows one to show that there exists a global "weak solution" of some kind, which either
exists for ever, or in finite time collapses to a point on the surface. In particular, if the initial curve is
homotopically nontrivial, then this generalized solution must exist forever. Moreover, the set of times
at which the generalized solution is singular (is not a classical solution) is discrete.

Finally, we show that if the initial data 'yo is a simple curve, without nodes (i.e. V(to, k.,) never
vanishes on -yo), then the maximal classical solution either exists for ever, or shrinks to a point, or, in
other words, that the generalized solution doesn't contain any singularities.

Notation. We use the same notation as in part I. In particular, fl(M) is the space of regular C'
curves in M, i.e. the space of equivalence classes of immersions ::S'--M, where 'Ti and 7T2 are
equivalent if there is a C' orientation preserving diffeomorphism h of the circle such that '1 = 12dt.

We assume that the surface (M, g) is a complete C o smooth surface with bounded scalar curvature;
P (M) denotes its unit tangent bundle.

A classical solution of (0.1) is a family of curves {'(t), 0<t <to} which at each t >0 has continuous
curvature, whose normal velocity satisfies (0.1), and which defines a continuous map [0, t0)--fl(M).

Section 1.3 refers to section 3 of part I, and formula (1.4.3) is of course formula three in section
four of part I.

1. Intersections, tangencies and nodes.

Let 10Efl(M) and 'TlEfl(M) be two regular curves in M, parametrised by arclength, and let
P= 'o(So)= 'T(sj) be a point in their intersection. The intersection is called transversal if the unit
tangent vectors y;(so) and 7yi(s0) are independent. If they are not, then P is a tangency of the two
curves, and one has y(s 0) = +'T1(s0), depending on the orientations of the two curves. If the two
tangents point in the same direction, then we shall call P an oriented tangency, otherwise we shall say
that P is a reverse tangency.
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If there are so *s, such that yto(so)=-to(si), then P= -t0 (so) is a self intersection of the curve -Yo.
The phrases transversality, oriented and reverse tangency are defined in the same way as for
intersections of different curves.

Throughout this section we shall assume that V is at least C 2'1.

This extra smoothness will allow us to apply the results from [A2j.

Theorem 1.1 Let -yo, -11 :[0, to)--*fl(M) be two solutions of (0.1). Then the set of moments in time t
at which "yo(t) and -yl(t) have an oriented tangency is discrete in (0, to). Moreover, for any tE(O, to) the
two curves -yo(t) and -y (t) have at most a finite number of oriented tangencies.

The proof of this theorem, and also the proofs of the other results in this section rely on the
following result from [A21.

Proposition 1.2 Let u : [xo,xlJx(0, t 0 )-.R be a continuous classical solution of

(0.1) u, = a (x, t)u. + b (x, t)ux + c (x, t)u

with u (xo, t) L0 and u (x 1, t) 0 for all tE(O, to).
Assume that the coefficients a, b and c satisfy

(i) 6 < a(x,t) < 6-1 forsome 6>0,

(ii) a, a, a., a., b, b, b, and c are bounded measurable functions on [xo,x 1 ]X(0, to).

Then, for any t >0 the number of zeroes of u (-, t)

z(t) = #{xE(xo,x 1) I u(x,t)=0},

is finite. In addition, if, for some tlE(0, to), u (',t) has a multiple zero (i.e. if u and ux vanish
simultaneously), then z (t) drops as t increase beyond t .

This result is a refinement of earlier results of Sturm, Nickel, Henry, Matano and
Fiedler&Angenent (see [A21 for further references). It has been rediscovered several times, and the
oldest reference is probably Sturm's [Stj2 which appeared in 1836 in the first volume of Liouville's
Journal. In this paper Sturm gives a proof of the proposition, implicitely assuming that all occuring
functions are real analytic and that the equation is of the form u, = (k (x)ux)x+q (x)u.

One should note that, if u (-,t 1 ) has no multiple zeroes, for some t1 >0, then all its zeroes are
simple and the implicit function theorem says that the same is true for all t which are sufficiently
close to t1 . So, z(t) drops if, and only if, u (.,t) has a multiple zero. Therefore the set of times at
which u ( ,t) has a multiple zero is discrete in (0, to).

Proof of theorem 1.1. Let ttE(0, to) be given. Just as in section three, we can find a C' smooth
immersion a:S 1x(-1, 1)-M which allows us to represent the curves -t0(t) by a functiony =u Qx),
at least for t close to ti(i.e. x--a(xu(t,x)) parametrises -yo(t)). The graph is oriented in the
direction of increasing x, and this orientation should be compatible with the orientaton of -t0 (t).

Suppose that at t =t 1 , -t0 (t) and -1 (t) have an oriented tangency. Define

E = {xES1  yo(t) and -y(t) have an oriented tangency at a(x, uo(t1 ,x))}.

2. I had the good fortune of being totd about this reference by both Bernold Fiedler and Bernhard Kawohl. It is remarkable
that the time independent versions of this proposition have become well known as Sturmian oscillation theorems, while the
parabolic counterparts seem to have been forgotten by most mathematicians.
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For each xEE there is a maximal subarc of 'y1(tl) which contains the oriented tangency at
a(x, uo(t,x)), and can be represented as the image under a of the graph of a C1 function
v :JCS1t(-1, 1), where J should be open and connected in S' (so I is either an open interval, or all
of S 1).

The (uniform) continuity of the tangent to yj(t 1) implies that there are at most a finite number of
such maximal subarcs. So there are finitely many C1 functions vk :Jk-(-1, 1) whose images under a
contain all oriented tangencies. After shrinking the domains J'k slightly, if necessary, we can ensure
that on alk one has

vk(x) o-u(tl,x) and IvkI < 1

and, in addition, Vk is C1 on k (i.e. v, is bounded on Ik).

Figure 1.1- Intersection of "ti and -r2.

By continuity of -t : [0, to)-fl(M) the functions vk can be extended to (t1-6, t1+6)xhk, for some
small positive 6, in such a way that this extension parametrizes a subarc of -y(t) (t-6<t <t1 +"). For
t dose enough to tj the images of the graphs of the vk contain all oriented tangencies (if there are
any) of -t1 (t) with yTo(t).

In section 1.3 we argued that the equation of motion, (0.1), is equivalent to a parabolic equation
of the type

(13.2) uf = F(x, u, u,, u,,),

with F given by (133). Our assumption that Vis C2 implies that F is also C2 1. This implies for any
classical solution u of (13.2) that the derivatives C+ 2a~u with j+k <2 exist and are Hl6der
continuous.

Both u and the vk are oriented in the direction of increasing x. Therefore they satisfy the same
equation (13.2), and their difference wk = U -Vk satisfies a linear equation of the form (0.1), where
one puts

a (t, x) f F--(x, u , u., u0) d8

and u =-Ou + (1-0)vk. For the coefficients b and c one has similar expressions involving other
derivatives of F.
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The smoothness of the solutions u and vk which we have just observed suffices to show that the
coefficients a, b and c in (0.1) indeed satisfy the hypotheses of the proposition. We have also ensured
that the function wk(t, .) does not vanish on the boundary of 'k, for t close to t 1 . Since multiple
zeroes of k(t, ") correspond to oriented tangencies of yo0(t) and -1(t), the theorem follows
immediately from proposition 1.2. 0

Corollary (Unique continuation). If, at t = O the curves -o(t) and - 1 (t) are different; then they
remain different for all t > 0 for which they are defined.

Indeed, if they would suddenly coincide for some positive t, then they would have infinitely many
oriented tangencies.

A slight variation of the proof of theorem 1.1 will show that a solution -y: [0, tM=)-fl(M) of (0.1)
has at most a finite number of oriented self tangencies for each t >0. The set of t for which such
selftangencies occur is discrete in (0, tm,).

One can also prove the following by the same kind of arguments.

Variation on theorem 1.1. Let 7t2: [0, tm,) x [0, 1]-M be two parametrizations of moving arcs
which satisfy (0.1), and for which

8-t,(t)n-t2(t) = 8- 2 (t)n-y1(t) =

holds for any tE[0, tma,). Then the set of moments t at which -y (t) and -12 (t) have an oriented tangency
is discrete in (0, tM,), while the number of oriented tangencies is finite at any time tE(O, ta,).

In general, theorem 1.1 and its corollaries will not be true for reverse tangencies instead of
oriented ones. The point where the proof breaks down is the observation that the functions u and vk

satisfy the same equation (1.3.2) because they are oriented in the same direction. Near a reverse
tangency u would be oriented in tme dir:ction of increasing x, and yk would have the opposite
orientation. Therefore vk satisfies (1.3.2) with a different F (namely F = 1-1/2 D 1/2 V(-da.T, -k); cf.
(1.33)).

However, if the velocity function V satisfies the symmetry condition (S) then these equations
coincide. In other words, assuming condition (S), the evolution of a curve does not depend on its
orientation. Yet another way to say this is that the evolution according to (0.1) on fl(M) is
equivariant with respect to the map p: f(M)-4)(M), which sends a curae to the same curve with the
opposite orientation.

Since the two equations (1.3.2), corresponding to the two possible orientations one can assign to
the graph of y =u (x), coincide when (S) holds, the proof of theorem 1.1 immediately yields the next
result.

Theorem 1.3 Let V be CZ and assume V satisfies V2, V3 and the symmetry condition (S).
Consider two solutions -0, -, : [0, to)--.fl(M) of (0.1), and choose parametrizations of these families of
curves (we use the same symbols -yo, 11 : [O,to) xS 1 -M to denote these parametrizations.)

Then, at each moment in time 4 the number of intersections of 'Jo(t) and "71(t),

i(t) = #{(so,s 1 )ES'XS t I -o(t, so) =-yl(t, sl)}

is finite. This number does not increase with time, and decreases exactly at those t for which y (t) and
-yt(t) have a tangency (i.e., a nontransversal intersection). The set of such moments t is a discrete subset
of (0, t 0 ).

Just as with theorem 1.1, there is an analogous statement for self intersections of a classical
solution -(t) of (0.1): at any time t >0 the curve -1(t) has a finite number of self intersections, and this
number does not increase with time. It decreass whenever -y(t) has a self tangency.
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One can also easily prove a statement analogous to the variation on theorem 1.1.

Variation on theorem 1.3. Let 71,2: 10, tM=)x[0,1]-4M be two parametrizations of moving arcs
which satisfy (0.1), and for which

a-Y(t)rn72(t) = a-12(t)n- 1(t) = 4

holds for any tE[0,tM=). Then the number of intersections of -71(t) and '72(t) is a finite and
nonincreasing function of tE(O, tM,=). It decreases whenever 71(t) and -t2(t) have a tangency.

Instead of comparing two arbitrary curves, we can take one family of curves -1: [0,t 0)--.f(M) and
consider the intersections of two infinitesimally close curves 7(t) and -1(t +dt) in this family. Or,
more precisely, we can consider points on -y() where the normal velocity of the family vanishes. We
shall call such a point a node.

Theorem 1.4 Assume that V satisfies the conditions V1 (m _2), V2 and V3, and let -1: [,t 0)-.M be
a solution of (0.1). Then, for any tE(0, to), 1(t) has at most a finite number of nodes, and this number
does not increase with time. In fac, it drops whenever the normal velocity v1 of -y(t) has a multiple
zero.

Proof. Again, we choose an immersion a::S1x(-1, 1)--.M with which we can represent -1(t) as
the image of a graph y = u (t, x), at least for all t suffiiently close to some prescribed t IE(O, t0 ).

The function u (t, x) satisfies (13.2), and the nodes of -1(t) are in one to one correspondence with
the zeroes of x-u,(t, x). But w = u, satisfies a linear equation, as one sees by differentiating (13.2)
with respect to time:

w, = Fw. + Fpw. + Few.

As before, we have assumed enough smoothness of F to be able to apply the roposition to w. The
theorem then follows immediatly. 0

We conclude this section with two special cases, one in which one can state the previous results in
slightly different terms, and one in which the proposition 1.2 can be applied in yet another way.

Let V satisfy

V(t, 0) 0-

for all tES'(M), so that the stationary curves for (0.1) are exactly the geodesics of (M, g). Then the
nodes of a curve -7(t) in a family -y:[0, t0)-.fl(M) are exactly the inflection points of -y(t), i.e the
points where the curvature vanishes. In this case the statement of theorem 1.4 holds for inflection
points; at any given moment -y(t) has at most a finite number of them, and this number does not
increase. An example of a V which satisfies this condition comes from the curve shrinking problem,
where V S k.

In the other special case we assume that M is a manifold of constant curvature. Recall that a
vertex of a curve is a point on the curve where the curvature either has a maximum or a minimum (cf
[Spivak], in particular page 30).

Theorem 1-5 If V is a function of the curvature only, V= V(k ), and M has constant curvature, then
for any solution -y: [0, t0)-*l(M) of (0. 1), the number of vertices on -1(t) is finite and nonincreasing wit:
time.

Proof. We choose an arclength parametrisation -1: [0, to)xR--+M of the family of curves -y(t) (so
g (-, -h) = 1), for which the point with s coordinate s = 0 moves orthogonally to the curve, i.e. for
which -1,(t, 0).L,(t, 0). If L (t) is the length of -f(t), then "y(t, ") is a periodic function, with period
L(t).
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As a function of s and t, the curvature k satisfies the following equation:

(1.2) A - as2  + 0(t, s) 8k + (R +k 2 )V(k)at as2  a
(cf. [ALl where this equation is stated in the case V(k)=-k; in our case it can be derived from (1.4.2)).

The quantity f(t, s) is defined by

S

j6(t, s) = f k (t, s')V(k Q, s')) ds'.
0

Differentiation of (1.2) with respect to s leads to a linear equation of the form (0.1) for u = ks. Hence
we can apply proposition 1.2 again, or rather the version with periodic boundary conditions, which
was also proved in [A2], to complete the proof. 0

2. Local Lipschitz estimates.

Ir section iine of part I we defined, for any C 2 curve -tEO(M), the quantity

Si

= SUP 0-sIeI fk (s)ds ,
so

and interpreted it as the maximal angle between two tangents to the curve, whose base points are
closer than c, when measured along the curve. Clearly, since the curve is C1 , one has

(2.1) lima,(3') = 0.

We shall now show how the definition of the quantity ac(-y) can be extended so as to include
nonsmooth curves. Consider an absolutely continuous curve 3":S'--M, which is parametrised by
arclength; thus in local coordinates (xl,x2) the functions xi,,l are absolutely continuous, and the
tangent to -1, which exists almost everywhere, has unit length (a.e.) . Just as in the C case, any
absolutely continuous curve, with -j'e0 (a.e.) has a continuous reparametrisation in which II =1
(a.e.) . Parallel transport along an absolutely continuous curve still makes sense: to transport the
vector al + e2 a.2(-T,(,0 )M, one solves the linear ODE

(2.2) dL = -{j/kds k

where (j } are the Christoffel symbols of the metric in the chosen coordinates, and t- are the
components of the unit tangent to y. Since -j has unit length (a.e.), this system of ODE 's has a
unique Lipschitz continuous solution for any prescribed initial vector. In this way one gets a Lipschitz
continuous family of orthogonal linear maps

P10.,1 : T.,(A,)M - T-.,o)M

which performs the parallel transportation.

If -y is a smooth curve and if aj(y)< a, then for each so the unit vectors
{P1 0,,(Q(s)): Is-so 1 < e/2} will lie in a cone in T ., 0)(M) with aperture a; i.e. there's a unit vector
eETA,0 )(M) for which
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(2-3) g>jsP,, e) cos(,:/2)

holds whenever Is-so1 < e/2. Note that g(-j(s),P,,,o(e))=g(Pso, ((s)),e)) holds, by
orthogonality of P, 0,,.) Given e > 0, ac(-/) is the smallest a with this property.

If -Y is an absolutely continuous curve, then we define aj(y) to be the minimal a such that, for any
so there is an eET(5 o)(M) for which (2.3) holds for almost anys with Iso -s 1 <5/2.

The curve -1 will be C1 iff (2.1) holds. It will be locally Lipschitz, i.e. locally the graph of a
Lipschitz continuous function y =u (x) iff a,(-y) < i for some small enough e>0. Indeed, one easily
proves the following Lemma.

Lemma 2.1. Let -y be a unit speed parametrisation of a locally Lipschitz curve, and let a point
p = "i(so) on the curve be given. Assume e > C s so small that

ak = a,(0) < 'r.

Then there is a p > 0a which only depends on a, e and R *, such that -([so-p, so+p]) is contained in
the disk D p(p), and in Riemann Normal Coordinates is given as the graph y = u (x) of a Lipschitz
function with

Su'(x) 1 _ 2 tan(2).

One could actually replace the bound 2tan(a/2) by (1+n)tan(a/2), for any 7 > 0, if one chooses
p small enough (depending on j7).

Proof. Since -y is a unit speed parametrisation, -([so-p, so+pl) is trivially contained in D,(p).
Choose a unit vector eET,7(o)(M) for which (23) holds, and let (x,y) be Riemann Normal
Coordinates around p with the x axis in the direction of e. Then, since the metric is locally Euclidean,
there is a p>0 such that any tangent i(s) with Is-so1 : e/2 and -1(s)-D (p) is of the form
aa. +bay, where a > 0 and I b/al I =2tan(a/2). Therefore -y([s o-p,so+p]) is a Lipschitz graph
y=u(x), with lu'(x) I = Ilb/al <2tan(a/2). 0]

By smoothly patching a finite number of such Riemann Normal Coordinate neighbourhoods
together , one sees that for any locally Lipschitz curve there exist an immersion cr:S'x[-1, 1]--M
and a Lipschitz function uEW.,(S 1) (I u (x) I < 1), such that x -a(x, u (x)) is a parametrization of -1.

We shali write Lipfl(M) for the set of locally Lipschitz curves.

The next theorem is the main result of this section. It gives an a priori estimate for the "local
Lipschitzness" of a solution of (0.1) in terms of a(yo).

Theorem 2.2 Let V satisfy V1, V2, V3, and let -y(t) (0<t <to) be a c!assical solution of (0.1), with
locally Lipschitz initial curve -oELipfl(M). If a,('yo) < i, then there rxist to> 0, 2 < i and e'<4 which
only depend on A, ji, R * and a(yo) such that

(e 0(t)) <-a

for 0 t <to.

In the proof we shall compare the -y(t) with various curve segments which are stationary for the
equation v' = V(t, k). We begin by defining them.

Stationary curve segments. If w: (a,b)CR-.M is a regular curve in Al for which V(t , k,) =O
holds, then we call w a stationary curve segment.

Since A<Vk5A -1 , and I V(t,O) I <5;, the equation V(t,k)=0 has a unique solution k=K(t),
for each teS1 (M), and this solution satisfies I K(t) 1 <_iA/A. Since V is locally Lipschitz and Vk is
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bounded from below, we know that K(t) is a locally Lipschitz function on S1 (M).

The stationary curve segments are exactly the curves in M which satisfy k,,= K(,, so that their
lifts to the unit tangent bundle are the trajectories of the vectorfield XK =tEK(t)n on S1 (M). This is
a bounded vectorfield, so that it generates a complete flow on S1 (M), and we may conclude the
existence of a unique stationary curve segment w1,,, through each point pEI, in any specified
direction tETpM.

Proof of theorem 2.2. Since our initial curve is locally Lipschitz, there is a smooth immersion
a: Six f -1, 1]---M, which allows us to parametrise "yo by x--o(x, u (x)), where u is some Lipschitz
continuous function on S1, satisfying

Iu(x) I< , lu'(x) I m (a.e.)

for some finite constant m. Moreover, a can be chosen so that its derivatives of order k>1 are
bounded by some constant which only depends on k, A, p, R * and a,((to).

By continuity of -y(t) there also is a tI >0 such that the curves -y(t) are images under a of regular
curves a*-t(t) when t<t,. For even smaller t>0, these curves will be graphsy=u (t,x), where u (t,x)
is a solution of (3.2), for the appropriate F.

For small 6>0 we define

A' = {(x,y)ES 1x [-1, 11 : Iy-u(x) I <6}.

By theorem (5.1) there is a t0 (b)>0 such that a*"y(t) is contained in A2 for 0: t < t(6).

Figure 2.1- The set A and the graphs of vP and wP.

For any given point pEA6 we consider the stationary curve segment starting at p, in the direction
of the vector a,+3m ay. In pa ucular, we consider the connected part that contains p and is contained
in A6. Since the geodesic curvature is uniformly bounded we can choose 6 so small that, for any
pAA2, this segment is the graph of .,,--..ion

vP : (aP, bP) - R

where v1a)= u (a)-6, vP(bP)= u (t- , and, more to the point, the derivative of vP is bounded
by

2m< <4m.
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Similarly, the part of the stationary segment through p, in the direction 8x-3mi0y, which lies in A 2,
will be the graph of a function wP: (cP, dt') --. R whose slope lies between -4m and -2m.

We claim that with this choice of 6, the curve a*7y(t) remains a graph y = u (t, x) with I us, I 3m
for t :t0 (6). In order to reach a contradiction, we suppose that for some t=t. the curve a'-(t) is still
the graph of y =u (t, x), but contains a point p at which u, > 3m. Consider the function
w(t, x)=u(t, x)-vP(x) on [aP,bPJ x[O,t.1. At t=6 it has a unique zero, which is simple; this follows
from I u' 1 < m and 4 > 2m. At t = t.* it must have at least three sign changes, as one sees from
u, > 3m > 2m = v at p, and the signs of w (t., ") at aP' and bP'. On the other hand, it satisfies a
linear parabolic equation of the type (1.1). So, if V were C2-, we could apply proposition 1.2 to reach
a contradiction: the number of zeroes of w cannot increase with time. In the general case, in which V
is merely locally Lipschitz, w still satisfies an equation like (1.1), but the coefficients don't have to be
smooth anymore. However, the number of sign changes of w still can't increase, e.g. by Matano's
version [Ma] of proposition 1.2 (this version allows rougher coefficients than proposition 1.2, but it
deals with sign changes instead of zeroes.) Thus u., remains bounded from above by 3m. By
comparing with wtP one shows that u, remains bounded from below, by -3m.

So, the curve -1(t) remains locally Lipschitz for tE(0,t0(6)), which implies the theorem. 13

The same proof also applies in the following situation. Let 'y(t) be a family of evolving curve
segments, which has normal velocity v' = V(t,(t), kX,)), and whose end points are time independent.
If the initial curve 70 = -y(O) is locally Lipschitz, then one has:

Variation on theorem 2.2 If a(1o) < ,, then there eist to>O , a< and 6'<e, which only depend
on A, p, R * and a,(o), such that

(-'00)) <a

for O_t - to.

3. Local pointwise curvature estimates.

Assuming the condition V 5 we shall derive a local form of the smoothing property of section 1.7
(i.e. of theorem 1.7.4). In addition to being local, this result is also stronger in the sense that it derives
boundedness of the curvature k from a given bound on ac(y(t)), a quantity which can be defined
without using the curvature of the curve. In the parabolic PDE jargon, the result gives interior L..
estimates of u. from L,, estimates of u,.

The precise result is this.

Theorem 3.1. Let S be the closed strip [-2, 2]xR, equipped with some smooth metric

g =A (x,y)(dr)2 +2B(x,y)drdy+C(x,y)(dy) 2,

where A, B, C their first and second derivatives and (AC - B2 )- 1 are uniformly bounded.

Let V:S 1 (S)xR-R satisfy V 1, V2, V 3 and V5.

Assume that "t(t) (0 < t < 1) is u classical solution of (0.1), i.e. of v1 = V(t, k), which at any instant
in time is the graph of a function y=u (t,x) ( Ix I <2) with

Iu.1 <m, (0<t<l, Ixl <2)

for some finite constant m.

Then there is a constant c, which only depends on A, 14, v, m, the C 2 norms of A, B, C and the L_.
norm of (B2 -AC) - ', such that
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U. c (O<t<l, 1I <1).

The hypotheses concerning A, B, C and (AC - B 2)-l imply that the curvature of the metric g is
uniformly bounded, so that for this particular manifold (S, g) the constant R * can be expressed in
terms of the C2 and L.. norms of A, B, C and (AC-B 2)-', respectively.

Naturally, we only need the bounds on the coefficients of the metric in the region in which the
curve -1(t) moves, rather than the whole strip S. Thus, if it were known that the curve always stays in
the rectangle [-2, 2]x[-W, U], and if the metric were only dcfined on this rectangle, then one could
extend the metric outside the rectangle in such a way that it automatically satisfies the hypotheses of
the theorem.

This theorem, together with Theorem 2.1, implies short term existence for the initial value
problem (0.1) with locally Lipschitz initial curves.

Theorem 3.2 Let V :S1(M)xR--R satisfy V1, V2, V3 and V5*.

Then, for any initial curve -yoELip (fl(M)) there is a maximal solution "Y: (0, tg )--fl(M), such that
7 as t-4.

More precisely, if a: S1 x [-1, 1J-M is an immersion for which a* (-o) is the graph of a Lipschitz
function y =uo(X() then for small t > 0 the curve cr*(-y(t)) is the graph of another Lipschitz function
y =u (t,x) and u (t,x)-*uo(x) uniformly as t---4

Proof. Approximate u0 by smooth functions un, whose first derivatives are uniformly bounded.
For each of these functions one can solve the initial value problem on some time interval [0, t,).
From the proof of theorem 2.1 one sees that there is a t,. > 0, such that, as long as t < t., the
solutions -,, (t) remain images under a of graphs of uniformly Lipschitz continuous functions u, (t, -).
Therefore, by theorem 1.9.1, the solutions cannot blowup before t,, i.e. for all n we have tn > t,. We
may assume that t < 1, so that theorem 1.3.1 gives us a uniform upper bound for the curvature of
the yn (t) (namely ct - ' / ' ), and hence we know that the curvatures are uniformly Hblder continuous,
provided t stays away from zero. All this allows us to extract a convergent subsequence of the -Y (t)
whose limit -y(t) is the solution we are looking for. Indeed, it is a classical solution, since its
curvature is bounded by ct - 1/2 for t < min(1, t,), and arguments similar to those in section eight
show that the limit solution has -to as initial value. 0

Before we prove the theorem, we observe that boundedness of u, implies Hblder continuity of u
in time. The analogous statement for quasilinear equations is well known; in our present situation it is
a direct consequence of the large scale displacement estimate of section 1.5.

Lemma 3.3. Let u be as in theorem 3.1. Then u is H'flder continuous in time for all I x < L i.e.
there's a constant c such that

Iu(to,x)-u(t,,x) I <c It1-to1/2 .

The constant only depends on A, M, m and the C 2 norms of A, B, C and the L. onorm of (AC - B2) - .

Proof of the lemma. We may assume that to < tI < to+t,., where t. is given in theorem 1.5.1.
The arguments in the proof of that theorem show that

,1(t1) C N,.fj --,0 ('/(to)LJ9S),

where distances are to be measured with the metric g. By choosing t. smaller, if necessary, we can
ensure that Ncvr.-(S) is disjoint from the strip [-1, lJxR. Then, for any to <tI <t 0 +t , one has

-y(t,)n[-1, 1]xR c Ne ,tva--,- (t0)).
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It is geometrically obvious that the condition I u, 1 < m implies that the Euclidean distance of a point
(x0, uo)ES to the curve -y(t) is bounded from above and from below by a multiple of J uo-u (t, x0) j.
We have assumed that A, B, C, and (AC - B2)-' are uniformly bounded, so that distances measured
in the metric g, and distances measured in the Euclidean metric are proportional by a factor which is
both bounded from above and below. Hence one obtains the inequality of the lemma. 0

The proof shows that u will be Hblder continuous in time on any set I x 1 < p, as long as p < 2.
Of course, one will have to choose the constant c = c . larger and larger as p gets close to 2.

Proof Theorem 3.1. We begin with a rescaling argument which shows that we only have to bound
un at t =1. LetE(O, 1) be given, and consider i(t, x) = a-u (a2t, ox). The graph of A satisfies (0.1)
with a new V, V = oV(t, o-1k), which also satisfies V1 ... I*, with the same constants A, ,U, V. The
geodesic curvature k should be measured with the rescaled metric a- 2g, which, in the rescaled
coordinates (e=x/o, 17=y/o), may be written as A ,(d0 2 +2B,d dq +C,(dp) 2. The C2 norms
of A, ,B, C, and the L_, norm of (A ,C, -B2)- do not exceed the corresponding C2 norms of
A, B, C and the L,, norm of (AC - B 2)-', as one sees after a short computation. Finally, the
rescaled u is also Lipschitz in x, and has the same Lipschitz constant, m, as the original u.

If we had a bound Iu,, I <c at t=1, then this bound would also apply to U. But this would imply
u. I < ca-1 at time t = a2, which is what we want. So, from here on, we shall concentrate on the

estimate for u, at t=1.

As before, the equation v1 = V(t, k) is equivalent to the parabolic p.d.e.

(13.1) u, = F(x, u,ux,un)

for the function u (t, x). The lemma tells us that u is uniformly bounded for I x <3/2 and t <1, so
that, by increasing m, if necessary, we may assume that I u 1 < m. Since I u, I < m, we may modify
F (x, u, p, q) in the region I p > m so that it satisfies F, ... F4 of section 1.10. In particular, we
can assume that F (x, u, p, q) q when IP I >2m or Iu I >2m holds. Our modified F can
therefore be written as

F (x, u, p, q) = A (x, u, p, q)q + B (x, u, p)

where A<A<A- 1, and B = F (x, u, p, O) vanishes for Iu I >2m, and is uniformly bounded by
lB I < B * otherwise.

Consider

,rh o).vQt,x)- -m+ae~cs -= -  ( Ix-el < " >-,
h

Then

v,= -a(v+3m), and v, = -h- 2 (v +3m),

and, using B I <- (v + 3m), youfind.

v, -F(x, v, v,, v,,,) >: (-a + h2 )( +m m)
h 2 m

v,-F(x, vv,, v) < (-a 1 + B" )(,,+3,).

So v is a subsolution if v, -F ( )< 0, i.e., if
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>_ t - 2 +  B.* =
c> A-lh2~ a,m

and v is a supersolution if v, - F )O, i.e., if

<__,Xh 2 -- B'-- _-- a,
m -

For each a > 0 and %[-1, 1] we let wa, be the solution of the Cauchy Dirichlet problem

w F xwww)(0<t<l, lx- l <A,/2)

w (t, rh /2)-0 (0<t <1)

w(O,x) = v' (0,x) = -3m +acos h.

The initial data for this problem are smooth, so a solution will certainly exist for a short time, and
if it fails to exist all the way up to t = 1, then the second derivative of w must blow up at some to < 1.
For as long as the solution exists it satisfies the following inequalities,

-3n + ae -Zcos --- < w' < -3m + ae-- cosx - e.
h - h

Therefore there is a neighbourhood of ±irh /2, of fixed size, on which one has w < -2m. We have
chosen our F so that w satisfies the ordinary heat equation in this region, so that the solution cannot
blow up near the boundary. The proof of theorem 1.9.1 shows that the solution cannot blow up in the
interior of the interval (C-7rh /2, C+irh /2) either. So we can conclude that the solution w a, 4 does
indeed exist, for any a > 0 and E(-1, 1].

The same argument also shows that, if you have a sequence of solutions, with different but
bounded a's and 's, then their second derivatives w, , must remain uniformly bounded for 0 <t < 1.
Therefore they are also uniformly H6lder continuous on 6 < t < 1, for any 6 > 0, and you can extract a
subsequence which converges to some classical solution of the PDE. By uniqueness of the solution
wa', , this implies that the wa' 4 depend continuously on a and e.

In the next step of the proof we determine a range a0 5a <aI and choose the constant h > 0 so
small that

(i) for any aE[ao, all one has I v 4(0,x) I >_2rn whenever I (0,x) I _<m, so that the
graphs of v (0, x) and u (0, x) intersect exactly twice.

(ii) at t=I one has waO't<-m and wal' (1, Om, so that wo" e(1,") and u(1,') have
disjoint graphs, and w"l ( 1,-) and u (1,-) still intersect twice.

To determine a 0, a, we observe that

Ivx. = --sinx-eI = [(a/h)2-(v+3M)212

h h

> (a /h) 2 _(4M)

which exceeds m 2 when a/h > m V 7. We shall take ao = Shin, so that condition (i) above is
satisfied.
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Turning to the other condition, we note that

w ao e(1 ,x) _< -3m + 5hme - = (5he-2 - 3)m,

so that we want 5he-2--3 < -1. This will certainly hold if h <2/5 and a >0. Recalling the
definition of a (i.e., how__eit dpends on h), we see that the first part of condition (ii) is satisfied, if we
choose h = min(1/5, V km Ic

Finally, one has

w1 (1, 0 >-3i +ale~ a

which will be larger than +m, if aI > 4nea; we choose aI --5ne.

Both u(t,x) and wG'"(t,x) are solutions of the PDE (13.1) so that their difference,
z (t, x)= u (t, x)- w' e(t, x), satisfies a linear equation like (11.1). As before, the number of sign
changes of z (t, .) cannot increase with time. By condition (i), we know that, at t = 0, z (t, ") has exactly
two zeroes, both of which are simple.

For any tE[0, 1] we know that z (t, ±rh /2) > 0.

Assume that, at t=1, z has a multiple zero, i.e. that z(1,xo)=z.(1,xo)=0, for some
xoE(C-irh /2, C+irh /2). Then we must have z ,.(1,x0) 0; for, if z,-(1,x0) <0, then z (1,.) would
have at least three zeroes (recall that z is positive at ± irh /2). This contradicts proposition 11.1, if
V is at least C2 . In general, it follows from z =z =0 and z,, < 0, that z, < 0, so that for some t1 < 1
close to 1 one has z(t 1 ,xo)< 0. Thus z(t, ") must have three sign changes, which contradicts
Matano's version of proposition 11.1.

This observation is of importance because it gives us an estimate of u,(1,x0). Indeed we have

u.(1,Xo) _ c

where c-infw,,,(1,x); the infumum is taken over all aE[ao,a], I 51 and
xE(E-wh /2, C+wh /2). We have already remarked that c exists, and that it can be bounded from
below by a constant which only depends on A, u, v, m and R *.

To complete the proof we have to show that for any xoE(-1, 1) one can find a, such that
u (1, ") - ,a, 4(1, -) has a multiple zero at x =x 0 . This would imply that the estimate (3.2) holds at any
prescribed x0 . An upper bound for u, follows by applying the whole argument to -u instead of u.

So let xoE(-1, 1) be given. Then we introduce the map

O:D [ao, aljx[xo-irh /2,x 0+'h /2] -, R 2,

given by 0(a, )= (Wa' (1,Xo) -u (1,Xo), w~' (1,xo) -ux(1,x)).

Let 01 and 02 be the first and second coordinates of 0, respectively.

We have to show that (0, 0) lies in the range of 40; arguing by contradiction, we assume this is not
the case.

The solution w' depends continuously on the parameters a and , so that the map 0 is
continuous. We shall compute its winding number on 8D.

On the three portions {aoIx[xo-irh/2,x o+irh/2] , and [a o, al]x{xo±rh/2) one has w < u, so
that 0 maps these sides into the left half plane (01 < 0).

On the remaining side, where a = a , we have
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wal.t(1,x) > -3m +ale cos x - e.
h

If >xo , and 01 (a1, e)=0, then 42 (a1, e) > 0. Indeed, by assumption we cannot have equality. If
the opposite inequality were to hold, then the difference wa , - u, as a function of x, would have to
have at least four zeroes in the interval (e- wh /2, e + ih /2).

So t maps {al)x[O,xo+irh/2 into the plane with the negative y axis removed, i.e.
R2-{0}x(-oo, 0]. Similarly -0 maps the other half of the fourth side of D into the plane with the
positive y axis removed. Our condition (ii) implies that 4P(a 1,xo) belongs to the right half plane, so
that we can conclude that -(aD) loops around the origin once, and therefore also that the origin lies
in the range of . This contradicts our initial assumption and the proof is complete. 0

4. The initial value problem for unoriented curves.

In this section we shall assume that V satisfies the conditions V1, V2, V3 and V 5, as well as the
symmetry condition S.

Theorem 4.1. For any C1 graphlike initial curve -10, there exists a classical solution "f: (0, t0)--l(M)
of (0.1), with yo as initial value.

Proof. Let a:S 1 x[-1, 11--M be the local homeomorphism and let uEC0 (S'), be the continuous
function with I u (x) 1 _< 1/2 which have properties (1,2,3) that were mentioned in the introduction.

Let a. be the curve segment {e}x[-1, 11 (with CCES1), and let P6o be the graph of

x =y+(y) (modZ) (- <Y5 1),

where f is a smooth, even function which satisfies 0y)-0 for I y 1 < 3/4, and (y) > 0 for
3/4 <y < 1 (see fig 4.1). We define h = 1).

For some small to > 0 we let pf(t) and at(t) (0 < t < to) be smooth curve segments whose images
under a evolve according to (0.1), whose end points remain fixed, and which also depend
continuously, in the C' topology, on e and t. At t =0, the curve segments should coincide with p 0
and a&0 respectively.

Such curve families can be constructed, after one modifies the function V near the edges of the
immersion a, i.e. near a(S1 x {1, -1}). This modification may be necessary, since we don't have an
existence theorem for the initial value problem for curves with boundary which evolve with
v1 = V(t, k). For smooth initial data one can repeat the procedure in section three of part I, and use
the theory in [Ei] or [DPG, Al] to obtain a local solution. Just as in the case of closed curves, the
maximal solution exists until the L,. norm of its curvature blows up. Now we have a local Lipschitz
bound for evolving curve segments (the " L..ation on theorem 2.2"), and the main result of the
previous section therefore gives us a bound for the curvature, away from the end points of the curve
segment 1(t). So, if the curvature of -y(t) blows up, then it must do so at one of its end points. To
prevent this from happening, we change V in a very small neighborhood U of a(S'x {-1, 1}), so that
V' (t,k) =-k for all k and t whose base point lies in a smaller neighborhood U'CU of a(S1x {-1, 1}).
This has the following effect. If you represent the cr(t) and pf(t) as graphs of functions, then near
their end points the equation v- ±= V(t, k) reduces to a quasifinear parabolic equation, instead of a
fully nonlinear one. For quasilinear equations one can appeal to the classical results of
Ladyzhenskaya, Ural'ceva and Solonnikov ([LUS]), which imply that the local Lipschitz bound forces
the curvature to remain bounded near the end points.

So, if we let the af(t) and pf(t) evolve with V' instead of V, then we have L . bounds for their
curvatures, as long as at(a((t))<ir and a,(pf(t))<r, for some e>0. In particular, the families pe(t)
and ac(t) will exist for a short time to >0, which is independent of .
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At each t >0 the curves o'(t) form a continuous foliation of the annulus S'x[-1, 11, as do the
curves pf(t). At each t>O these foliations will be transversal, and the minimal angle at which the
curves pf, (t) and orf (t) will intersect is bounded from below.

Now choose C' functions un(x) which converge uniformly to u (x), and let u,(t, x) be such that
the images under a of the graphs of u,(t, -)evolve according to (0.1), and such that un(O,x)=-u. By
our existence theorem in section 3, the u. will be defined on some time interval [0,t,,].

At t = 0 each u, will be transversal to both the a& 0 and the pc o foliations, and because our
satisfies the symmetry condition (S), it follows as in section 1, that the graph of u,(t, -) will be
transversal to the af(t) and pf(t) foliations. Since these foliations intersect each other at a nonzero
angle, this implies that the u,,(t, ") are Lipschitz curves, and uniformly so in nEN. But this implies that
the un(t, ") cannot blow up before t =to, and that they have uniformly bounded curvatures on any
time interval [6, to] (6 > 0). Some subsequence of the u,'s will therefore converge to a classical
solution of (0.1), and using theorem 1.5.1 one verifies that this limiting classical solution has the graph
of u (x) as its initial value.

Thus we have a local solution of (0.1) for the modified VE, and since V and Vl coincide in a
neighbourhood of -1o, there's an initial segment {-y(t),0 t<t} which is a solution of (0.1) for the
original V. 0

5. The limit curve in the unoriented case.

Let -1: (0, tM,)-fl(M) be a classical solution of (0.1). Then we have shown in section five, that
the sets 'y(t) converge in the Hausdorff metric to a limit set -r* as t-tMa. In this section we shall
show that this limit curve actually is piecewise smooth.

Theorem 5.1. Assume that V satisfies /2, V3, V5 and S, and let V be at least C2- .

If -y: [0, tMa,)-fl(M) is a maximal classical solution with tM,, < co, then there exist a finite number
of points {Q " ,Qm} on the limit curve y*, such that y*'{Q 1 ,Qm} consists of smooth
(C' +2-) arcs. Away from the points Qj the curve -1(t) converges in the Cm+ topology to -y*.

The number of singular points does not exceed K(tM,.)/S, where K(t M,) is the upper bound for the
total absolute curvature of ly.

Proof. We may assume that the length of -y(t) does not tend to zero as t-tM,, since the theorem
is trivially true in this case.

For each t<tMa. we let y, :S'-M be a constant speed parametrisation of -1(t). On S we have the
measure I k (t, s) I ds, and we define K, to be the pushforward of this measure under the map

S1, :-S "M; thus K is a Borel measure on M, and by theorem 1.4.1 the measures K, are uniformly
bounded for t <tMag.

We select a sequence t, "tM,- for which the measures K,. converge weakly to some limit measure
K. This limit measure can be decomposed into its atoms and a continuous part, i.e. we can write K
as

K= i

where K4({P}) = 0 for any point PEM, {Q, } is an at most countably infinite sequence of points in M
and x, > x i >2 -- ... > 0 is a sequence with Exc < oo. Let m be the smallest integer for which
r, +1 < 7, by theorem 1.9.1 m is not less than 1, i.e. one of the x's must be >7r.

Let P be any point in M-{Q,, • • •, Qm} which lies on the limit curve y*. Then there is an c>0
such that K(B,(P)) <r, and after throwing away the first few t,,'s, if necessary, we may assume that
(,(B,(P))<ir-at for all n and some c>0.
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For any n, the preimage of B(P) under -y, will consist of a countable family of intervals fitcs.

Assuming that e is so small that none of the "y(tn)'s is contained in B,(P), the length of any Ii whose
image intersects B,/2 (P) is bounded from below by c/L, where L is the length of -y(t ,). Therefore
there cannot be more than L /(e/L) = L 2f-1 of such intervals. By passing to a subsequence of {t,}
we may assume that this number of intervals is constant, say k.

Choose Riemann Normal Coordinates (x,y) on B,(P). One can write the unit tangent to Iy(t) at
% as

t(t, s) = r[cos(O)8l + sin(O)Dy],

where r(tn, "), 0(t, ") are continuous functions on i.

If the metric of the manifold M were flat on B,(P), then the condition K,.(B,(P)) < r-a would

imply that the range of 0(tn,') on the Ji's would consist of k intervals whose combined total length
does not exceed x-a. The complement of this range therefore contains an interval of length at least
a/k. In general the metric will not be flat, but by choosing e small enough (compared with the
maximal curvature R * of M) we may assume that the complement of the range of O(t,, ") contains an
interval of length c/2k. This interval might depend on n, but after passing to a subsequence again,
we can assume that there is an interval of length a/4k which lies in the complement of the ranges of
all the 0(t,, .)'s. After rotating the coordinates we may also assume that this interval is [7r/2-a/8k,
x/2+t/8k]. The final conclusion is that we may assume that at each t . there are exactly k
components of -y(t)B,(P) which also intersect B,12 (P), and that these components are graphs of
uniformly Lipschitz functions u, 1(x), "'" ,u,,k(x). Their Lipschitz constant is in fact bounded by
cot(a/8k).

Since -1(t) converges in the Hausdorff metric to -y*, the functions un,i(x) (1 < i < k) will converge
uniformly. Their limits will parametrise if*fB,/2 (P).

Choose ,q>0 so that the two line segments l±=[-efx{±'} lie inside Bi2(P) and are
disjoint from "1". By throwing away a finite number of ta's, if necessary, we can arrange that l± are
disjoint from all the y-(t,) as well.

For any xE[-E, j we let w. be the unique stationary curve segment in B,1 (P) with (x, -17) and
(x, Y7) as end points. As we explained in section twelve, these segments are obtained by integrating
the vector field XK = t( &K(t)n on the unit tangent bundle S(M). The boundedness of the function
K :S1 (M)-R implies that the segments w do indeed exist and are uniquely determined by their end
points, if c is small enough. Moreover, they form a foliation of a small (nonlinear) rectangle R whose
sides are wU and 1± (see figure 5.1.)

Now let no be so large that -y(t) and the line segments l± are disjoint for all tE(tno,tM,,) ( and not

just at the tj's). At each time tj (j >no) we know that "1(t) intersects each w,, at most a finite number
of times; by passing to a subsequence again we can ensure that this number is constant, say k1 :5 k.
Since the curves -(t) stay away from the end points of each w,, the arguments of section one
(theorem 1.3) show that the number of intersections of y(t) with w., never increases, and drops at any
time t, when -y(t) and w,, have a nontransversal intersection. Thus the number of intersections of -y(t)
with w,, remains constant (k1) after t = tn0, and -y(t) must intersect the w,'s transversally for t > to.

In other words, for t >t0, the intersection -y(t)nR consists of k, curves which are graphlike with

respect to the foliation (w1). Arguing as in the previous section, this implies that the k, curve
segments which make up -yt)nR remain uniformly Lipschitz, and hence that their curvatures remain
uniformly bounded and H61der continuous in the interior of R. Therefore -y(t)nR remains smooth,
and converges to -y*nR, which also must be smooth. We can conclude that the limit curve is indeed
smooth, except, maybe, at the points Qi, 1 , Qm. 0
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6. The reduced limit curve.

To get a better description of the limit curve, we choose a parametrization r: S 1 x [0, tM.)-+M of
the solution y: [0, tM..)-4iA(M), for which r,(u, t)±J7,(u, t) holds for all (u, t)ES1 x [0, tM=). As in
section six, we write the arclength as

d= J(u, t)du,

where I is the length of r,; I satisfies It = -kv'J.

By theorem 6.2 the r(u, t) converge (uniformly) to some Lipschitz continuous map r. :S -I M.
In general r. need not be a local homeomorphism. In what follows, we try to see "how bad" r. can
be, by looking at its self intersections.

Let UCS 1 be the set of u's for which r.(u) is not one of the singular points Q. Since r. is
continuous the set U is open in S 1.

We claim that U consists of a finite number of intervals. If this were not true, then U would be
the union of a countable family of disjoint intervals U = uf1 Ui. On each of these intervals r.
parametrizes a curve segment going from one of the singular points to another (or, possibly, the
same). Since the their total length is finite, all but a finite number of these will begin and end at the
same point. Thus all but a finite number of these intervals get mapped into arbitrary small
neighbourhoods of the Qi, which implies that all but a finite number of them will have total absolute
curvature >,r-e, for some c>O. Since the total absolute curvature of the limit curve is finite, this is a
contradiction.

Finiteness of the total absolute curvature also implies that r. is actually C' on U, and that the
unit tangent

J(u, t)

is continuous on U.

Write U= u,=tUi, with Ui disjoint intervals, and S 1-U=u 1=l4i, where the 1i are closed intervals
(or points). For small positive 6, let 1i. 6 denote the 6 neighbourhood of I,; we can choose 6 so small
that the li, 6 are disjoint. Also define

40(t) =f 0k(,t)) J(u, t) du
14 6

where 0(k) = I k I if :,k I > 1, and 0(k) - 1-k 2/2 otherwise. Then, just as in section four of part I,
one shows that '(t) is bounded from above, so that A(t) is of bounded variation, and li, M , (t)

exists. Indeed, the only change we have to make in the arguments in section four, concerns the
boundary terms which appear when we integrate by parts in (1.4.4). These are certainly bounded,
since our solution stays smooth on 0i, 6. Thus

K1.6(t)= f Ik(u,t) IJ(u,t)du
Id, A

also converges to some Ki. 6(tMaz), as t-tu

The same blow up argument which was used to prove theorem 9.1 also implies:

Lemma 6.1. Either Ki. 6(tM.) r ifor all 6 > 0, or limKi, 6(tuMa) = OL6-.
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Proof. If the curvature of r(t, -) remains uniformly bounded in Ii, 6 as t tends to tM then the limit
r. is smooth with nonvanishing derivative on I, 6. The interval Ii, 6 therefore must be a point {u o },
and one has I Ki, 6 1 < C6 for some C > 0. If this happens, then r. IIi, 6 is a regular part of the limit
curve, which just happens to pass through one of the Q,'s at the time that another part of the curve
-1(t) became singular there.

Figure 6.1- A regular part of r. passes through one of its singularities.

If the curvature of r(t, .) becomes unbounded in Iis, then we can select a convergent sequence
(u,, t,) along which k blows up. Since r(t, -) remains smooth outside of f1 , the limit of the us's must
lie in Ii, 6, so that the arguments in section 1.9 go through without any change. The conclusion is that
the total absolute curvature of r. in Ii, 6 must be at least x. 0

Next, we look at the intersections of the arcs r. I Ui and r. I Uj, for i #j. Let uoEUi and uIEU
be given with P = r.(u 0 ) = r,(u 1 ).

If P is a transversal self intersection of r., then -y(t) must have had a transversal self intersection
near P, just before tMrea. Since the number of self intersections of -y(t) is finite (and nonincreasing with
time), there can only be a finite number of such (u0, u1 )'s.

In general we have the following alternative.

Lemma 62. If uoEUi,uEUj (i*'j) and P=r,(uo)=r.(u1  then P is either an isolatated self
intersection of'I*, or there is an c>0 such that

r.([uuo+e))cr.(uj) or r.((u0 -,. uo1)cr. (Uj)

holds.

Proof. Indeed, if the second alternative doesn't occur, then there is an interval (a, b)c U
containing u0 for which r.(a) and r. (b) do not lie on r,(Uj).

Since P is not one of the Qi's, there are at most a finite number of v's in U with r (v) = P; let v0
be one of these. Choose an interval (c, d)cUj containing v0 , such that r.(c) and r.(d) do not lie on
r. (Ui). By continuity of r there is a to <tM,, such that r(a, t) and r(b, t) do not lie on r(Uj, t) for
to < t < tu,., and vice versa. It follows that for all tE[to, tM,.] the number of intersections of the two
arcs r(U, t) and r(Uj,t) will be finite and nonincreasing in t. Therefore P must be an isolated
intersection of r.(Ui) and r.(Uj). 0

Consider a nonisolated self intersection P = r.(u0)Er.(Uj), and let EcUi be the largest interval
(with or without end points) containing u0, such that r.(E)cr. (U).

Lemma 6.3. Either E = U, or, for some cEUi, one has E = (ai, c I or E = Lc, bi).
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(where Ui = (ai, bi)).

Proof. First note that E is dosed in Ui. Indeed, if {uEE} converges to some uoEUi, then there
are vnEU with r.(ud.:=r.(vn). By passing to a subsequence we can arrange that the vs's also
converge to some v0EUj. Since r.(v0)=r.(u0 ) is not one of the Qi's, v0 must lie in Uj (i.e., not on
a1), so that u0 belongs to E.

Since E is a closed interval in Ui, the lemma states that E is not of the form [c, djcUi. Suppose
that E does have this form. Then, by the maximality of E, there is a 6>0 such that
E6 =[c-6,d+6cUi, and r.(aE6 ) is disjoint from r,(Uj). By continuity of r, this also holds on
some short time interval to <t <tm,, so that the variation on theorem 13 implies that rI.(E 6) and
r.(Uj) only have a finite number of intersections, a clear contradiction with r.(E)cr.(Uj). o

RemarL It is not clear whether or not a nonisolated self intersection can occur. If such a self
intersection developes, then the limit curve contains an arc which is traversed at least twice by the
limit parametrisation r.. It follows from the strong maximum principle that any neighborhood of any
point on this arc contains a self intersection of one of the 'y(t)'s, for some t <tm,,r. In other words, one
or more self intersections of -1(t) have to move up and down the doubly parametrized part of the
limit curve infinitly often before the curve becomes singular. So, to say the least, a nonisolated self
intersection is a slightly pathological thing. Nevertheless, we can't conclude from the arguments in
this section that they don't occur.

On the other hand there is no known example of a solution whose limit curve contains a doubly
parametrized arc. An indication that they might occur is given by the existence of solutions u (t, x) of
the ordinary heat equation

Ut = UZI

on the rectangle (0<x <1, 0<t <oc) which vanish in finite time (see Matano's paper [Ma].)

Assuming analyticity of V, the manifold M and the metric g improves the situation a little bit. In
this case the curves -y(t) are known to be real analytic, and even the smooth parts of the limit curve
are real analytic. Indeed, one could follow a compact sub arc of -1(t) whose limit doesn't contain any
of the singular points Qj, and simply continue it beyond tMf., by requiring it to have normal velocity
v'=V(t, k), while keeping the end points fixed. Then for each t this sub arc will be an analytic arc,
although, as is usually the case with solutions of parabolic equations, it will not necessarily be analytic
in the time variable. But if the limit curve is piecewise real analytic then the second alternative in
lemma 6.3 cannot occur!

Nevertheless, even if the situation in the real analytic case is somewhat simpler, one still can't
exclude the possiblity of a "figure eight" collapsing to a smooth arc (see figure 7.1.)

We shall now define the reduced limit curve by removing certain "redundant parts" from r.. First
we'll collapse the intervals Ij. Let S' be the circle S 1 with the intervals I identified to points; i.e., call
two points x, yES' equivalent ifx =y, or i" they lie in the same interval Ij, and let S' be the quotient
of S' with respect to this equivalence relation. Since r. is constant on each of the intervals I it
defines a map from S' to M which we shall also denote by r. (so r. ([r 1) = r. (x) for any xES' and
its corresponding equivalence class [x JES').

In general one should not expect r. :S--M to be locally injective. However, if r. fails to be
locally injective then lemma 6.3 tells us that for at least one of the intervals Ij = [a, bj] there must be
fl, C2 > 0 and a homeomorphism

,7: [aj-fl, ajl--b j , bj+E2]

for which r.(o(u)) = r.(u). In other words, if Qj = r.(jl) then as, u varies from aj-el to bj+(2,
the point r.(u) makes its way from r.(aj-q) to Qj and then retraces its path back tor.(b+2 r. (aj-ei).
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Figure 6.2- A redundant part of r..

For any interval Ij =-[a, b J there will be a unique largest interval [c, d =EjDI for which such a
homeomorphism 97: [c, a ]- [b, d I exists. Choose a maximal disjoint subcollection E1 , "", E,, of the
E's and define S" to be the circle S1 with the intervals E (1 i:m) collapsed to points
[Eli, ,[Em]. Since r. is constant on each cEj we can define a reduced limit curve rred: S "-M

by

rd(u) = r.(u) if uqEj, j=, • • .,m

= r.(vj) ifuEEJ and vj EE.

The collection of intervals Ej was chosen maximal so that r.. is a local homeomorphism of S" into
M. Away from the points [Ej]ES ° r,.d is smooth (C2,a), and its total absolute curvature is finite.
Thus r,d is a piecewise C1 curve. Moreover all self intersections of the reduced limit curve are
isolated (since the non isolated ones are contained in the Ej's), and because such isolated
intersections existed just before the curves -y(t) became singular, r,,, cannot have more self
intersections than any of the -y(t)'s had (0<t <tMa).

Lemma 6.4. Any piecewise C 1 map from S1 to M which is locally ijecive parametrizes a C'
locally graph like curve.

In particular, our reduced limit curve rda is C' locally graphlike and we can use it as initial data
for the equation v- = V(t, k).

Proof. Let uES" be given. If u is not one of the [E-1 then rd is smooth with nonvanishing
derivative near u, so that the reduced curve certainly is a C regular curve around u.

If u = [E1J, then for some e>0 rd will be C' on [[Ej]-C. [Eu] and [[Eu, [E 1 1+e]. In particular

the left and right hand limits of the unit tangent to r,,d, t_- and t+, will exist.

If t_.. -t+, then near r,,d([Ej]) the reduced curve will be locally Upschitz, and therefore
certainly C locally graphlike.

In the remaining case, t- = -t+, in which r,. makes a 180 degree turn at [Ej], one can choose
smooth coordinates x,y near the point r([Ej]) such that near this point the image of r,. is the
union of the graphs of two C' functions y =f 1 (x) andy =f 2(x), both defined for 0<x<1. Since rd,
has at most a finite number of self intersections we may assume that the two graphs are disjoint,
except at r,,([Ej 1). Thus f, and f2 satisfy

f1 (x) < f2(x) for 0<x<1

f,(0) f2(0) f (o) = A (o) = 0.
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Ired4.

Figure 63-- A 180 degree turn.

Now choose a continuous function 97:[-1, 11--R which vanishes for x 50, and which satisfies
i(x) > max( I fi (x)I, I f2 (x) I )for 0 < x_< 1. Define

f 1 (x)+f 2 (x)-2y
a (x,y) = f2(x)-fi(x) i1(x) if fl(x)<Y<f2(X)"

= +i,(x) ify>_f,(x) andx>0,

= -7(x) ify<_f 1 (x) andx>O,

= 0 if x<0.

Choose some x 0 > 0, and let yp be the solution of the ODE

(6.1) - a (xy (x)), yp(-xo) =p.dr

We have chosen the function 17 such that

a (x, f2(x)) < f (x)

a (x, f I (x )) > f, (x )

holds for 0 <x < 1, and this implies that the graphs of the yp's intersect the curve segment

r,.( [[Ej]-e, [Ej]+eI) at most once.

Using ay,(x, y)<0, one easily verifies that yp(k) is uniquely determined by its initial value p, and
that o(q, p) = (q, yp(q)) is a C 1 map. Since the yp's are constant for x<0, there is exactlyone p such
that the graph of yp passes through the origin (namely, p =0). Away from the origin a7 is locally
bounded, so the existence and uniqueness theorem for ODE's implies that the graphs of the yp'S are
disjoint; hence a is also a local homeomorphism. Since its derivative , = (1, a (q, p)) never vanishes,
the reduced limit curve is C' locally graphlike. 0

7 Generalized solutions.

We still assume that V:S 1(M)xR-R is C2-1 , and that it satisfies the conditions VI, • , V 5 as
well as the symmetry condition S.
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Let '70Efl(M) be a regular curve, and let "y(t) be the corresponding maximal solution of
v'=V(t, k). If this solution becomes singular in finite time, say at t=t1 , then we have just shown that
there exists a reduced limit curve -y(tl), which is C1 locally graphlike. This curve may be empty, e.g.
if the solution -y(t) shrinks to a point, or if y(t) is a figure eight which collapses to a curve segment'
(see figure 7.1). If this curve is not empty however, then we can use it as an initial value for the
parabolic equation. This gives us a new maximal classical solution -(t) (tl t 2). The new solution
may exist forever (t 2=oo), or it too may become singular in finite time (t 2 < 00). Again, if the new
reduced limit curve is not empty, then we can continue the solution after t 2 .

Figure 7.1 - A collapsing "figure eight," with an empty reduced limit curve.

This procedure can be repeated indefinitely, and as a result one obtains either a finite sequence of
maximal classical solutions of which the last has an infinite lifespan, or an empty reduced limit curve,
or else one obtains an infinite sequence of solutions -i: (ti, ti+)-fl(M). We shall call such a
sequence (finite or infinite) of classical solutions a generalized solution of v'=V(t, k).

With what we have proven so far we cannot exclude that the sequence t,, at which the maximal
solutions become singular might be bounded, i.e. that su =t0 <oo. The main result of this section

says that this cannot happen.

Theorem 7.1. Let 1(t) (Ot<t.,) be a generalized solution of v = V(t, k). At each time t, at
which 7(t) becomes singular either

liminf .- ~) > ir

and the limit curve -* has less self intersections than 1(t) or else

liminfa,(-t(t)) > 2i'.

In other words the only way a classical solution can become singular is by forming a kink of at
least 180 degrees in which a self intersection disappears, or else by forming a kink of at least 360
degrees.

Corollary. For any "yoEOl(M) there is a generalized solution which exists for all time, or else there is
a generalized solution which has an empty reduced limit curve.

3. As in section six, I don't know whether this can happen or not. The results of this paper don't exclude the possibility of a
"collapsing figure eight," but on the other hand I don't know of examples of initial curves that produce such a collapsing
figure eight.
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It follows from Grayson's work on the curve shortening equation [Gr2] that if V(t, k) - k, then the
only way in which a curve can become singular is by contracting a loop, thereby losing a self
intersection. It seems reasonable to conjecture that this is also true in the general case at which we
are looking, and that one could prove this if one had a generalization of his "6-whisker lemma." In
fact, in his paper [GrI, p. 300] Grayson calls this "Surprisingly, ... the easiest case to rule out."

Proof of theorem 7.1. We choose a normal parametrisation r: (O, tM))xsx-'M of the given
classical solution -y: (0, tM,)-(fl(M) , i.e. a parametrisation for which r,(t, u).LP,(t, u) holds for all
(t, u). Just as in section 5 we let K, be the Borel measure on M given by the total absolute curvature
of -y().

Let Q(M be one of the singular points of the limit curve -y*. Assume that for some to and
0<tl<tM, the curve -1(t) has no self intersection in N,0(Q), for any tE(t1, tM). Then we'll show by
contradiction that for any e>0 one has

liminf a,(-y(t)nN,,(Q)) >! 27r.

Suppose that this is not true. Then there's a sequence t,, "t and an el >0 such that

CX, (-1(t.')nN,.(Q)) < 2-,,a

for some small a>0 - we'll assume that a< 10-3xx.

Since -1(t) is simple in NO (Q), and since -1(t) converges in the C2-a topology, away from the point

Q, it follows from the strong maximum principle that -y*nN,(Q) consists of a finite number of C'
curve segments whose only common point is Q. Away from this point these segments are even C 2 a
smooth.

Without loss of generality we may assume that "y(t,,)nNO(Q) has only one component; if there are

more, then one should apply the following arguments to each of these components.

We'll also assume that el is so small that N, (Q) fits in a coordinate neighbourhood of Q. Let
(x, y) be isothermal coordinates on N,, (Q), so that the metric of M has the form

(s)= p(x, y)[(dx) 2 + (dy) 21

for some smooth function p(xy)>O. By choosing el small enough we can ensure that p is nearly
constant; we shall in fact assume that l<p(x, y)<1+10 - 14 .

For pEN,, (Q) we let ex(p) = p(p) - ' 2 3, and ey(p) = p(p)-11 ay be the unit vector fields in the x
andy directions. Define

A = su(I Ve I + IVeyI).

For any pE-y(t)nNn (Q) define 0'(p) to be the angle between t,(,.)(p) and ex(p). It follows from
cos(0,') = (es, t.K,)), and sin(&,) = (ey, f**t)), that

d7 - kl(,.) + (t, cos(O9)V,ey-sin(8.)V,e.)

and thus

(7.1) I -A.
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Now we assume that e is so small that

(7.2a) .<el

(7.2b I¢.(N,.(Q)-{Ql) < lO-37xa

(7 .2c) length (-I*)N.(Q)) < 1O-xa/A

holds.

Since the length of -y(tn)nN,(Q) converges to the length of "y*nN,(Q), the last condition on c
implies that for sufficiently large n one has

(7.3) length (i'(tn)flNe(Q)) < a'.

Then it follows from (7.1) that for any two points p, p'-(t,)nN(Q)

P

On (P)-On I W) I fk(s)ds I +Axlength('-y()nN,(Q)) :_ 2 - 2 .
2

P

which gives an estimate for the oscillation of 0, on -"(t,)nN,(Q):

(7.4) osc0,(p) = sup0,,(p)- infOn(p) < 2r- -
P P P 2

By passing to a subsequence, and rotating the coordinates x and y, if necessary, one can ensure that
the angle 0. satisfies

<r P): 3,r a .

2 8- 2 8

for anyp--(tn)nN,(Q). Since "y(tn) converges in C' to "1", away from Q, this also implies

I" a 3i'_a

2 8 2 8

for allp-y*nN,(Q),p*Q, where 0.(p) is the angle between t,.(p) and ejp).

Put 8=10-3xa. Then for eachpE.(t,)nN(Q) we have

max(-2!+2# , 0(p)-1r+,6) < min(2!-2, en(p)-j6),

since P=I0-3a < 10-4r. Therefore there is a continuous function #,. defined on the segment
.(t,)fnN,(Q), which satisfies

(7.5) O,,(p)-i-+,e: 0<,.(D0:) -< 6,,(P)-,e

(7.6) I n(P) I - - 2fl,

and, by Tietze's theorem, we can extend this function to the entire disk N,(Q), so that it still satisfies
(7.6). After slightly perturbing 0. we may assume that it is a C' smooth function. Since 'Y(t)

converges in C-"* to -"*, at least away from the point Q, we can choose the 0. so that all their
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derivatives of any order are uniformly bounded on any compact KCN,(Q) which does not contain the
point Q. By passing to a subsequence we may even assume that the 0,, and their derivatives converge
uniformly on such compact sets. We'll denote the limit by 0..

The foliations F,, and F.. Consider the vectorfield

X,,(p) = cos4,,(p)ex(p) + siiO .(p)ey-

The integral curves of this vectorfield form a foliation F. of the disk N,(Q). The functions 0, and ,
were defined in such a way that the following lemma is true.

Lemma 7.2. The leaves of F. intersect -y(t,,) transversally; in fact4 whenever a leaf of the foliation
and the curve -y(t,,) intersect, the angle of intersection is at least P. At any point p on -y(t,,) the pair
{X,(p), t.-,.)(p) } is a positively oriented basis for Tp (M).

Here we've assumed that our coordinates are chosen so that {e,, ey } is positively oriented. The
lemma follows immediately from the inequalities (7.5).

As n-oo the vectorfields X, converge to X, =cos(O,)e+sin(.)ey, on N,(Q)-{Q}. The
limiting vector field defines a smooth foliation F,. of the punctured disk N,(Q)-{Q}.

Construction of the box R. Let IcN,(Q) be the vertical linesegment with end points
P± = (0, ±E/2), and let A ± be the leaf of the limit foliation F. through the point P±. Both A+ and
A - are graphs of Lipschitz continuous functions y=f±(x), and since I f±'(x) I < cot 20, there's a
positive 6 such that f± are both defined on the interval -6<x<. In fact, since the metric on N,, (Q)
is almost flat (1<p<1+10- 14), we can take 6 = 0.5x10-'6xae (see figure 7.2.) From here on we shall
use A± to denote the part of these leaves which lies in the strip I x I 6.

Figure 7.2.- The nonlinear rectangle R.

Define

R = {(xy) 1 -6_<x_5,f_(x)_yf+(x)}

The region R is a nonlinear rectangle; its left and right hand sides are the vertical line segments:

s +={6}xf_(Of+(o); s-={-6}xf-(-), f+(-6)J.

Claim. We can assume that -* is disjoint from the two sides s± of the rectangle R

Proof of the claim. Suppose not. By assumption the complement -* -{Q } of Q in "* consists of
two components, -y* and -y. Assume that the curve y* is oriented so that -y is directed towards Q,
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and -1 is directed away from Q (outside of its singular points '* gets its orientation from being the
C' limit of the oriented curves y(t).) If -,* intersects one of the two sides s*, then there must be a
point pE-j* such that

I tan(e.(ps)) I - 2xlO x,-,

and hence

I0,(pj)I - .5 10x1°x .

Our assumptions (7.2b ) and (7 .2c) imply that the oscillation of 0. on each of the -07nN,(Q)'s is less
than 2x10- 37 x a. Therefore we find that

0.(P) I < - _ °-7xa

for anype77nN,(Q).

So we see that, if -7 intersects one of the sides of R, then 7j*nN,(Q) is the graph of a function
whose derivative can be estimated by cot(lOT/a).

We must distinguish between two cases: (1) each side sk intersects at most one of the components
-Y', or, (2) both components go through one of the two sides s±.

First case. Let - iL.tcrsect the left hand side s-. Then one can change 4,. in the region
-6 <_6/2, y <f +(x), so that the new A- bends upwards and intersects 7 (see figure 73.) One can
choose the new 4,. so that it too satisfies

and so that the leaves of the new F. are again graphs of Lipschitz functions.

Similarly, if - intersects the righthand side s+, then one can modify 4, in 6/2 !x<:6, f -(x) <y, so
that the new A+ bends down, and intersects 12 (see figure 7.4.)

If both sub cases occur at the same time, then one makes both changes. The other ways in which
the "first case" can occur are: - passes through s+, -y2 passes through s -, or both. In each of these
three cases one can make similiar changes.

Second case. Suppose that both 'y77's intersect the left hand side s -. Then -7 must lie above -Y 7
(see figure 7.5.) Indeed, -y* is the limit of the simple C1 curves y(t,) whose tangents never point
downwards, i.e. tKt,,)(p)*-e. for any pE-y(t.)nN,(Q), which follows from (73). If - would lie
below 7yr, then any curve without self intersections which is C' close to 1*, away from Q, must have a
point at which the tangent is (0, -1). So this can't happen.

Given that y2 lies above -y, it is again clear that one can change 0. in the region -6<x_<-6/2
so that A+ gets bent down, and A.. gets bent up in such a way that -y2 (-yr') intersects the new A+
(A..). See figure 7.6.

Of course, if the -yj* go through the other side, then one can again do the same kind of
construction.

So, we may indeed assume that y* does not intersect the sides of the rectangle R. 0

In the proof of the claim we have changed 0,., so that the 4. will not converge to 4. anymore.
However, we have only changed 4,. outside of the open set U=int(N 6/2 (Q)), so we can change the
0,,'s so that they will again converge to 0.. Let v7EC"(U) be a function for which n(p)- in a
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neighbourhood of Q, and define

O =

Then On and On',4 coincide in a neighbourhood of Q, and On will converge to the new 0. From here
on we'll write On for 0.'.

Conclusion of the proof of theorem 7.1. Let An, d be the leaf of F. which goes through the point
(0, ). We want to let An, e evolve with normal velocity v1 = V(t, k), but just as in section four, we
don't have an existence theorem. Therefore we must modify V again.

Since 7I(t)-+7* in the Hausdorff metric, one can find an open neighborhood ODs+Us-, and an
no>l such that -t(t) is disjoint from 0 for all tt,,o. Choose a smaller neighborhood O'cO of
s+us_, and change V in S'(O)xR so that V'n (t,k)-k for all k and tES1 (O'). Then 1(t) also
evolves with normal velocity v= V '(tX,), k. ,)), for tn0 t <tM,.,

Let A,,,(t) (tt,) evolve with normal velocity vt= e(t,,,(),kAe,)), with initial configuration
An,(0n)= AnC, and with fixed end points. Since the An, f are uniformly Lipschitz, there is a r>0 for
which the A,,,(t) exist for t,,5t5t,+r. The A,,,(t) will form a foliated rectangle RI(t).

Choose an n>no with t,+r>tMa,. If n is large enough, then it follows from the displacement
estimates of section five in part I that the rectangle R"(tm ..) will contain the point Q.

The curve -y(t,,) intersects each leaf An, exactly once and transversally. The end points of the
A,. (t) lie on the sides s*, and therefore the curve -y(t) stays away from these end points for
t,:t <t),. This implies that 'y(t) will be transversal to the A,(t) for all tE(t,, tMa).

Now we can use the same trick as in section 4. We introduce a second foliation whose leaves
14,, (t) evolve with v1-=V(t,k), and whose end points are also fixed on the sides s±. The initial
position pn, of 14n, e(t) is obtained from An, f by "bending the ends" of An,( as in figure 7.7.

~~t ~> tr

.4,..4 -4t4 'Nj

Figure 7.7.- The two foliations with leaves An, and a,, C
at t =t,, and a little later.

If the un, e are chosen dose enough to An, e (in the C' topology) then the u,, f(t) will also exist as
C2 a curves for tn<_t:tMar. The result is that the Anf(t) will be transversal to the u,, f(t), while the
-t(t) will be transversal to both the n, J(t) and jun, e(t) foliations. Since the angle of intersectection
between A.,,(t) and isn, (t) is bounded away from zero, for t>(tn+tM,)/2, this means that the -y(t)'s
remain uniformly locally Lipschitz as t tends to :,. But this contradicts our initial assumption that
-t(t) becomes singular at Q. 10
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Proof of the corollary. We know that the total absolute curvature of any solution cannot grow
faster than exponentially, and that the number of self intersections of a solution immediately becomes
finite and does not increase.

We claim that theorem 7.1 and its proof show that the following is true. Whenever a solution
becomes singular and the limit curve has the same number of self intersections as some -1(t), then the
total absolute curvature K, of the limit curve satisfies

(7.7) K. < lir K(t)-ir,

where K(t) is the total absolute curvature of -y(t).

Figure 7.8 - How the total curvature drops by r.

Indeed, let Q be a singular point of the limit curve. As in the proof of the theorem we may
assume that, if e is small enough, -I(t)nN,(Q) has only one component. Given any 6>0 there's an
c>O such that the total absolute curvature of N,(Q)n-y* is less than v+6. By the theorem, for t close
to tM,,, the total absolute curvature of N,(Q) must be at least 27r-6.

So, assuming that -y(t) doesn't lose any self intersections at tM,, we find that at least 7r-2,6 of
curvature disappears into one of the singular points as t-tM. Since -y(t) converges in C2 away from
the singular points, this proves (7.7).

If a generalized solution would have an infinite number of singularities in a finite time interval,
then it would lose an infinite amount of total absolute curvature, or it would lose an infinite number
of self intersections. Of course neither of these two possibilities can happen, so that the generalized
solution must exist forever. 0

8. Curves without nodes.

Let -y(t) be a family of curves which evolves with normal velocity v'= V(tK,(),k,<,)), and for
which 7(0) = -y has no nodes. By theorem 1.4 "t(t) won't have any nodes either. For such families
we have the following result.

Theorem 8.1. If V is C2 and satisfies V2, V3, V 5 and S, then any maximal classical solution of
(0.1), which is simple and has no nodes, either exists for ever (i.e. t .. =oo), or else it shrinks to a point
in finite time.

Proof. Recall from section two that V(t,k)=O has a unique solution k=K(t) for any tES 1 (M),
and that this solution is uniformly bounded. If
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A= su IK(t) j,

then it follows from V(t.,(),k.Kt))0) that either k.K<) !-A holds for all t on the entire curve -1(t), or

else k.(t) A holds. We may assume that the first inequality holds.

The theorem now follows easily from the next lemma.

Lemma 8.2. For any A >0 and any compact set CCM there's an eAc >0 for which the following is
true. If -ylE(M) is a simple curve whose curvature is bounded from below by k, >-A, and if for some
QEC and O<c<ec there is a component of -ynN,(Q) whose total curvature is at least 3x/Z then
-ycN 2 (a).

Proof of the lemma. If A =0 and M were flat, then -y would be a convex curve, and the "worst
case" is drawn in figure 8.1. Clearly the hypotheses imply that the convex curve -y must be contained
in N-(Q).

Figure 8.1 - A convex curve, with most of its curvature contained ina given circle.

In general we replace the metric g by g = c- 2g. Since C is compact, the curvature and all its
derivatives are bounded on C, so that we may assume that the disk N10(Q) = NV0c(Q) is as close to
Euclidean as we like, by making e small. The condition k,>-A gets replaced by k.,>-cA4, so that for
small enough e any component of "TnN1 (Q) will be almost convex.

So for small enough e the situation is a small perturbation of the Euclidean case with A =0, and
one sees that for any constant c >V/2 (such as c =2) there's an cA.C,C >0 such that -1cNc,(Q) if
<"A.c- 0

To complete the proof of the theorem, we choose a singular point Q on the limit curve -*, and
we note that for any small c>0 the proof of theorem 7.1 shows that the total -'irvature of at least one
component of -y(t)nN,(Q) will exceed 37r/2, for t!t ,. By the lemma we then get Y(t)CN 2,(Q). Since
this works for any small c>0, we see that -1(t) shrinks to the point Q. 0
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